Photon-Electron Scattering

A photon with an energy of E = 750 keV hits a target electron and undergoes so-called hard Compton scattering, as shown in Fig. 7.

Figure 7: Schematic illustration of photon-electron scattering.

Mathematically, the scattering process is described by the following formula,

$$2E_{\gamma}^{i}E_{r}\sqrt{1+2E_{0}/E_{r}}\cos(\phi) = \left(E_{\gamma}^{i^{2}}-E_{\gamma}^{f^{2}}+E_{r}^{2}(1+2E_{0}/E_{r})\right),\qquad(1)$$

where $\phi = 67^{\circ}$ is the angle of the recoiling electron (whose energy is E_r), $E_{\gamma}^f = 690.3787$ keV is the energy of the scattered photon, and $E_0 = 511$ keV is the rest mass of the electron.

Task

Write a structured and well commented Fortran program which uses Newton's numerical root finding method to determine the energy E_r of the recoiling electron.

Program Design

- The value of ϕ is keyboard input. Use the advance='no' option in the write statement so that the cursor does not advance after the writing.
- Limit the maximum number of allowed iterations to 30.
- Use an initial value of $E_r = 150$ keV to start the root finding algorithm.
- Terminate the calculations if $\Delta \equiv ||E_{r(i+1)}| |E_{r(i)}|| < 0.005$, where *i* denotes the *i*th iteration step.
- A warning message is to be written to screen if the root has not been found after the maximum number of allowed iterations.

• Use a FUNCTION to compute the value of $Z(E_r)$ defined as

$$Z(E_r) \equiv 2 E_{\gamma}^i E_r \sqrt{1 + 2E_0/E_r} \cos(\phi) - E_{\gamma}^{i^2} + E_{\gamma}^{f^2} - E_r^2 (1 + 2E_0/E_r), \qquad (2)$$

where, according to Newton's root-finding formula,

$$E_{r(i+1)} = E_{r(i)} - \frac{Z(E_{r(i)})}{Z'(E_{r(i)})}.$$
(3)

- Determine the expression for $Z'(E_r) \equiv dZ(E_r)/dE_r$ mathematically and code it up in a FUNCTION sub-program.
- The intent descriptor is to be used to declare the arguments in the FUNCTION sub-programs.
- For each iteration, the values of the iteration index it, Δ , and E_r are to be written to standard output as shown below:

it=	1	Delta=	40.0370331	E_r=	109.962967
it=	2	Delta=	16.9764709	E_r=	92.9864960
•					
it=	10	Delta=		E_r-	

Submitting your Homework: Email a copy of your Fortran code to ewhart317@gmail.com. Put PHYS 317 HW 11 in the subject line.