The data (filled squares) shown in the Figure 6 can be well fitted with a 3rd-order polynomial of the form $f(x) = a_1 + a_2x + a_3x^2 + a_4x^3$. The coefficients a_1, a_2, a_3, a_4 are determined by the set of linear equations

Figure 6: Experimental data fitted by a 3rd-order polynomial.

given by Eqs. (1) through (4):

$$m a_1 + \sum_{j=1}^m x_j a_2 + \sum_{j=1}^m x_j^2 a_3 + \sum_{j=1}^m x_j^3 a_4 = \sum_{j=1}^m y_j, \qquad (1)$$

$$\sum_{j=1}^{m} x_j \ a_1 + \sum_{j=1}^{m} x_j^2 \ a_2 + \sum_{j=1}^{m} x_j^3 \ a_3 + \sum_{j=1}^{m} x_j^4 \ a_4 = \sum_{j=1}^{m} y_j \ x_j , \qquad (2)$$

$$\sum_{j=1}^{m} x_j^2 a_1 + \sum_{j=1}^{m} x_j^3 a_2 + \sum_{j=1}^{m} x_j^4 a_3 + \sum_{j=1}^{m} x_j^5 a_4 = \sum_{j=1}^{m} y_j x_j^2$$
(3)

$$\sum_{j=1}^{m} x_j^3 a_1 + \sum_{j=1}^{m} x_j^4 a_2 + \sum_{j=1}^{m} x_j^5 a_3 + \sum_{j=1}^{m} x_j^6 a_4 = \sum_{j=1}^{m} y_j x_j^3.$$
(4)

The quantity m (=21) denotes the number of data points. In matrix notation, Eqs. (1) - (4) are given by $\mathbf{A} \mathbf{a} = \mathbf{b}$, where $\mathbf{a} = (a_1, a_2, a_3, a_4)^T$ contains the unknown coefficients, which we want to compute. They follow from

$$\mathbf{a} = \mathbf{A}^{-1} \mathbf{b} \,, \tag{5}$$

where \mathbf{A}^{-1} denotes the inverse of matrix \mathbf{A} . Both \mathbf{A} and \mathbf{A}^{-1} are $n \times n = 4 \times 4$ matrices.

Tasks

Write a structured and well commented Fortran program which computes the coefficients a_1 , a_2 , a_3 , and a_4 . To do that you may use the Fortran subroutine INVERSE which computes the inverse of matrix A and returns the result to the calling program. You can download this subroutine and the experimental data set from the class website. The subroutine is called with

CALL INVERSE(A, C, n)

where the first argument is the coefficient matrix \mathbf{A} of the system of linear equations (1) through (4). The second argument, \mathbf{C} , is an auxiliary matrix which, on return to the calling program, contains the elements of the inverse matrix, i.e., $\mathbf{C} = \mathbf{A}^{-1}$. The matrices \mathbf{A} and \mathbf{C} must be declared as REAL in the calling program.

Code Design

- The program determines dynamically how much space is to be allocated for all arrays and matrices.
- The data from nonlinear.dat is read with a DO loop to determine how much storage space must be allocated for the arrays and matrices.
- Do not forget to use the REWIND command to reposition the data file to the beginning of the file so that the next READ statement will read the first record.
- Use the ALLOCATE statement to assign the actual bounds to the arrays and matrices.
- The best-fit cubic model data are to be written to an output file for x values 0(0.01)1.
- The screen output produced by your program should be as follows:

```
Vector b:
   24.118000
                 13.234500
                                9.468365
                                              . . .
Matrix A:
   21.000000
                 10.500000
                                7.175000
                                              . . .
   10.500000
                  7.175000
                                5.512500
                                              . . .
    7.175000
                  5.512500
                                4.516663
                                              . . .
    5.512500
                  4.516663
                                3.854156
                                              . . .
Inverse matrix A<sup>{-1</sup>}:
    0.544011
                -3.960025
                               7.715984
                                              . . .
   -3.960029
                42.864491
                            -97.344635
                                              . . .
    7.716001 -97.344681 238.249985
                                              . . .
   -4.391153
                 60.141766 -154.079041
                                              . . .
Solution vector (a_1,a_2,a_3,a_4):
    0.574694
                       . . .
                                 . . .
                                              . . .
```

• Plot the original data and the best-fit cubic model data, as shown in Fig. 6.

The program structure shown below should help you to write your code.

PROGRAM CubicFit

IMPLICIT none

```
! Date I/O
```

```
OPEN(unit=10, file='nonlinear.dat', status='old')
OPEN(unit=20, file='CubicLeastSquaresFit.dat', status='unknown')
```

! Determine how much space needs to be allocated for arrays and matrices

! Determine actual bounds for arrays and matrices

! Read data from data file

! Compute all sums

! Compute all elements of matrix A

! Compute all elements of vector b

! Print a header and elements of vector b

! Print a header and the original matrix

```
! Compute inverse matrix C = A^{-1}
CALL INVERSE(A,C,n)
```

! Print a header and the inverse matrix C

! Compute all components of the solution vector a

! Print a header and all elements of the solution vector

```
! Write best-fit data to output file
    x_A =0.0; x_B=1.0
    Nint= 100
    DO i=1,Nint
        x_i = x_A + (x_B - x_A)/float(Nint) * float(i)
        f_i = a(1) + a(2)*x_i + a(3)*x_i**2 + a(4)*x_i**3
        WRITE(20,*) x_i, f_i
    END DO
```

! Release arrays and matrice from memory

! Close access to data files

END PROGRAM CubicFit