Reading Assignment: Read Sections 3.4, 3.6, and 4.2 in the Class Textbook.

The equation that describes the speed of a rocket is given by the differential equation

$$\frac{dv}{dt} = \frac{R \, u_{\rm ex}}{m_i - Rt} - g \,, \tag{1}$$

where the speed v is in m/s and time t is in seconds. This equation is called the rocket equation. The quantity $F_{\rm th} = Ru_{\rm ex}$ is the force exerted on the rocket by the exhausting fuel, and is called the thrust (R denotes the burn rate, $u_{\rm ex}$ is the speed at which the fuel is exhausted relative to the rocket). The payload of a rocket is defined as m_f/m_i , where m_f denotes the rocket's final mass, after all the fuel has been burned, and m_i is the rocket's initial mass. The quantity g denotes the gravitational acceleration (9.81 m/s²). The Saturn–V rocket (one of the most powerful rockets ever built) used in the Apollo moon-landing program had an initial mass of $m_i = 2.85 \times 10^6$ kg, a payload of 27%, a burn rate of 1.384×10^4 kg/s, and a thrust of 3.4×10^7 N.

Tasks

Write a complete fortran program which solves equation (1) numerically using the Euler forward differentiation method to determine the speed and position of a Saturn–V rocket for times $0 < t \leq t_b$, where $t_b = (m_i - m_f)/R$ denotes the rocket's burn time in seconds. The result for the speed will be compared with the analytical solution of the rocket equation.

Code Design

- The code must contain a preamble and must be well commented.
- The value of the temporal time step $\Delta t = 0.01$ seconds is keyboard input. The code must prompt the user to input this value from keyboard.
- The numerical values of F_{th} , R, u_{ex} , m_i , m_f , payload, burn time t_b , and the rocket's altitude at t_b are to be written to standard output (i.e., to the terminal).
- The results for the rocket's speed as a function of time are to be written to a data file named speed_t.dat
- The results for the rocket's position as a function of time are to be written to a data file named altitude_t.dat
- The analytical solution of the rocket equation is given by

$$v(t) = -u_{\rm ex} \ln\left(1 - \frac{Rt}{m_i}\right) - gt.$$
⁽²⁾

Extend your code to compute v(t) for times $0 \le t \le t_b$ according to Eq. (2) and write the results to speed_t_analytic.dat.

- Create a plot that shows the rocket's altitude as a function of time.
- Create a plot that compares the numerical results for the speed of the rocket with the analytic results obtained from Eq. (2).

Submitting your Homework: Create a gzipped archive file of your homework (fortran code and the two pdf plots) named LastFirst_HW7.tgz and email this file to ewhart317@gmail.com. Put LastFirst PHYS 317 HW 7 in the subject line.