The purpose of this worksheet is to practice the implicit DO loop construct to read (and then manipulate) data from input files.

Bessel functions play a very in optics and quantum mechanics. The Bessel functions of the first kind $J_n(x)$ are defined as the solution to the Bessel differential equation

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - n^{2})y = 0.$$
 (1)

They are sometimes also referred to as cylinder functions or cylindrical harmonics. Figure 1 shows $J_n(x)$ for n = 0, 1, 2, ..., 5. The numerical values of $J_0(x), ..., J_6(x)$ for $0 \le x \le 20$ are stored in an archive named

Figure 1: The n^{th} -order Bessel functions of the first kind $J_n(x)$ for $0 \le x \le 20$.

bessel_functions.tar.gz. on the class website.

Tasks

• Download bessel_functions.tar.gz from the class website.

• Use tar -tzvf bessel_functions.tar.gz to list the content of the archive and then extract the content with tar -xzvf bessel_functions.tar.gz. This will create a sub-directory on your machine named Bessel_J0_J6 which contains the Bessel functions $J_n(x)$ for x values in the range $0 \le x \le 20$ (n = 0, 1, 2, ..., 6).

• Use the commands more and tail to display the first/last few lines of each data file.

• Write a structured and well-commented Fortran program which reads the numerical values of each data file (i.e., x and $J_n(x)$), computes $J_n(x)^2$ for $0 \le x \le 20$, and writes $J_n(x)^2$ as a function of x to an output

file. Note that seven different output files must be created, since n = 0, 1, 2, ..., 6. Use the implicit DO loop construct to read the data from each input file. The syntax will be something like this:

```
DO
READ (100, *, end=20) x, J_x
WRITE(200, *) x, J_x**2
END DO
20 CONTINUE
```

Below are some sample results for $J_0(x)^2$ for selected x values:

x	J_0(x)**2
0.0000000	1.00000000
1.0000000	0.585527539
2.0000000	5.01270816E-02
3.0000000	6.76270276E-02
4.0000000	0.157727972
5.0000000	3.15406136E-02
6.0000000	2.26939935E-02
7.0000000	9.00475606E-02
8.0000000	2.94640008E-02
9.0000000	8.16016085E-03
10.000000	6.04844019E-02
20.000000	2.78976895E-02

Submission Instructions: Rename your Fortran source code to LastFirst_WS9.f90 and email it to ewhart317@gmail.com. Put PHYS 317 WS 9 in the subject line.