Purpose: In this worksheet you will learn how two integrate a continuous function numerically using the Trapezoidal rule.

Let f(x) denote a continuous function and h = (b-a)/N (N is an integer). The Trapezoidal rule is give by:¹³

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \left(f_0 + 2 \sum_{k=1}^{N-1} f_k + f_N \right), \qquad N \text{ is even or odd}, \tag{1}$$

Task

Write a structured and well-commented Fortran program that uses the Trapezoidal rule to compute the integral

$$W \equiv \int_{a}^{b} x \sqrt{x} \sinh(x) \, \mathrm{e}^{-\sqrt{x} \cos(x) - x^{2} \sin(x^{2})} \left(1.0 + 0.5x + 0.2x^{2} + 0.1x^{4} \right)^{-1} \, dx \tag{2}$$

for (a = 0, b = 1.0), (a = 0, b = 1.60), and (a = 1.0, b = 1.6). The number of grid points, N, to be used in Eq. (1) to compute the integral of Eq. (2) should range from 2 to 100, in increments of 2.

Figure 7: Graphical illustration of the integrand of Eq. (2).

Code Design

N=

- Your code must contain a preamble.
- The values of the integration limits *a* and *b* are keyboard input.

• The number of grid points, N, used to compute the integral in Eq. (2) is determined by a DO loop. The N-values range from 2 (2) 100.

- Use a <u>statement function</u> to define the integrand in Eq. (2).
- The terminal output generated by your program for a = 0 and b = 1.0 should be as follows:

2 W_Trap= 7.66319335E-02 a= 0.00000000 b= 1.0000000

 $^{^{13}\}mathrm{See}$ Section 4.3 in Class Textbook.

N=	4 W_Trap=	7.71269202E-02 a=	0.00000000	b=	1.00000000
N=	6 W_Trap=	7.71715343E-02 a=	0.00000000	b=	1.0000000
•					
•					
•					
N=	96 W_Trap=	7.72050917E-02 a=	0.0000000	b=	1.00000000
N=	98 W_Trap=	7.72050917E-02 a=	0.0000000	b=	1.00000000
N=	100 W_Trap=	7.72050992E-02 a=	0.0000000	b=	1.00000000

For a = 0 and b = 1.60, the terminal output has the form:

N= N= N=	2 W_Trap= 4 W_Trap= 6 W_Trap=	0.283346236 0.221091896 0.205621883	a= a= a=	0.0000000 0.0000000 0.0000000	b= b= b=	1.60000002 1.60000002 1.60000002
•						
•						
N=	96 W_Trap=	0.190015063	a=	0.0000000	b=	1.6000002
N=	98 W_Trap=	0.190012231	a=	0.0000000	b=	1.6000002
N=	100 W_Trap=	0.190009519	a=	0.0000000	b=	1.6000002

For a = 1 and b = 1.60, the terminal output is give by:

N=	2 W_Trap=	0.132111773	a=	1.00000000	b= b=	1.60000002
11-	∓ w_iiap-	0.110210040	a-	1.00000000	D-	1.0000002
N=	6 W_Trap=	0.115244508	a=	1.00000000	b=	1.60000002
•						
•						
•						
N=	96 W_Trap=	0.112748884	a=	1.00000000	b=	1.6000002
N=	98 W_Trap=	0.112748496	a=	1.00000000	b=	1.6000002
N=	100 W_Trap=	0.112748086	a=	1.00000000	b=	1.6000002

Note the dependence of the numerical results on the number of grid points used to compute the integral.

Rename your Fortran source code to LastFirst_WS7.f90 and email a copy of the code to ewhart317@gmail.com. Put PHYS 317 WS 7 in the subject line.